中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共19条,第1-10条 帮助

条数/页: 排序方式:
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models 期刊论文  OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:  
Yang, Zhizhou;  Zou, Lei;  Xia, Jun;  Qiao, Yunfeng;  Cai, Diwen
  |  收藏  |  浏览/下载:31/0  |  提交时间:2022/09/21
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models 期刊论文  OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 17
作者:  
Yang, Zhizhou;  Zou, Lei;  Xia, Jun;  Qiao, Yunfeng;  Cai, Diwen
  |  收藏  |  浏览/下载:24/0  |  提交时间:2022/09/21
Electrochemical system for anaerobic oxidation of methane by DAMO microbes with nitrite as an electron acceptor 期刊论文  OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 卷号: 225, 页码: -
作者:  
Chai, Fengguang;  Li, Lin;  Xue, Song;  Xie, Fei;  Liu, Junxin
  |  收藏  |  浏览/下载:21/0  |  提交时间:2022/01/04
Analytical Surface Potential-Based Compact Model for Independent Dual Gate a-IGZO TFT 期刊论文  OAI收割
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 卷号: 68, 期号: 4, 页码: 2049-2055
作者:  
Guo, Jingrui;  Zhao, Ying;  Yang, Guanhua;  Chuai, Xichen;  Lu, Wenhao
  |  收藏  |  浏览/下载:59/0  |  提交时间:2021/06/01
Near-field correction of CSAMT data based on Newton iteration method and GA method 期刊论文  OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 卷号: 61, 期号: 10, 页码: 4148-4159
作者:  
Luan XiaoDong;  Di QingYun;  Lei Da
  |  收藏  |  浏览/下载:29/0  |  提交时间:2018/12/11
Growth and performance research of Tb3Ga5O12 magneto-optical crystal 期刊论文  OAI收割
JOURNAL OF CRYSTAL GROWTH, 2018, 卷号: 484, 页码: 17, 20
作者:  
Jin, Weizhao;  Ding, Jingxin;  Guo, Li;  Gu, Qi;  Li, Chun
  |  收藏  |  浏览/下载:87/0  |  提交时间:2018/12/28
A study of the optimization design method for a high speed train 会议论文  OAI收割
Cagliari, Sardinia, Italy , 5-8 April 2016
作者:  
Zhao GL;  Sun ZX(孙振旭);  Yao SB(姚拴宝);  Guo DL(郭迪龙);  Yang GW(杨国伟)
  |  收藏  |  浏览/下载:45/0  |  提交时间:2018/11/08
Structural amelioration of 920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) (EI CONFERENCE) 会议论文  OAI收割
2nd International Conference on Energy, Environment and Sustainable Development, EESD 2012, October 12, 2012 - October 14, 2012, Jilin, China
作者:  
Liu Y.;  Liu Y.;  Wang L.;  Wang L.;  Wang L.
收藏  |  浏览/下载:20/0  |  提交时间:2013/03/25
920 nm optically pumped semiconductor vertical external-cavity surface emitting laser (OPS-VECSEL) has an important application in laser display. We constructed and optimized a 920 nm OPS-VECSEL with active region of In0.09Ga0.91As quantum well (QW) system pumped by 808 nm laser diode module. By the finite element method  self-consistent solutions of the semiconductor electronic and optical equations are realized to calculate the characteristics parameters of OPS-VECSEL. The performances of device especially the mode  the threshold and the optical-optical translation efficiency were analyzed by dealing with different number of QWs (1  2 and 3) in one period  QW depth  barrier width  the component and dimension of the non-absorption layer. We chose an improved structure of them. On this basis  we ameliorated the number of QW periods and the simulation showed that in order to obtain high performance device  the choice of the number of QW periods must be cautious. (2013) Trans Tech Publications  Switzerland.  
Integrated optimization method for coupling parametrization design of complex space system (EI CONFERENCE) 会议论文  OAI收割
2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2012, October 20, 2012 - October 21, 2012, Chengdu, China
作者:  
Han C.-S.;  Wen M.
收藏  |  浏览/下载:138/0  |  提交时间:2013/03/25
An improved hyperspectral classification algorithm based on back-propagation neural networks (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:  
Yu P.;  Yu P.
收藏  |  浏览/下载:34/0  |  提交时间:2013/03/25
In this paper  a new method is proposed to improve the classification performance of hyperspectral images by combining the principal component analysis (PCA)  genetic algorithm (GA)  and artificial neural networks (ANNs). First  some characteristics of the hyperspectral remotely sensed data  such as high correlation  high redundancy  etc.  are investigated. Based on the above analysis  we propose to use the principal component analysis to capture the main information existing in the hyperspectral images and reduce its dimensionality consequently. Next  we use neural networks to classify the reduced hyperspectral data. Since the back-propagation neural network we used is easy to suffer from the local minimum problem  we adopt a genetic algorithm to optimize the BP network's weights and the threshold. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.