中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Optimal Cooperative Secondary Control for Islanded DC Microgrids via a Fully Actuated Approach 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2024, 卷号: 11, 期号: 2, 页码: 405-417
作者:  
Yi Yu;  Guo-Ping Liu;  Yi Huang;  Peng Shi
  |  收藏  |  浏览/下载:40/0  |  提交时间:2024/01/23
Adaptive Linear Quadratic Regulator for Continuous-Time Systems with Uncertain Dynamics 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2020, 卷号: 7, 期号: 3, 页码: 833-841
作者:  
Sumit Kumar Jha;  Shubhendu Bhasin
  |  收藏  |  浏览/下载:18/0  |  提交时间:2021/03/11
Distributed Formation Control of Multiple Quadrotor Aircraft Based on Nonsmooth Consensus Algorithms 期刊论文  OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 卷号: 49, 期号: 1, 页码: 342-353
作者:  
Du, Haibo;  Zhu, Wenwu;  Wen, Guanghui;  Duan, Zhisheng;  Lu, Jinhu
  |  收藏  |  浏览/下载:64/0  |  提交时间:2019/03/05
State feedback controller design for affine parameter-dependent LPV systems 会议论文  OAI收割
Toulouse, France, July 9-14, 2017
作者:  
Liu Z(刘重);  Theilliol, Didier;  Gu F(谷丰);  He YQ(何玉庆);  Yang LY(杨丽英)
  |  收藏  |  浏览/下载:23/0  |  提交时间:2017/12/21
The research of nonlinear control based on fuzzy neural network (EI CONFERENCE) 会议论文  OAI收割
International Conference on Electrical and Control Engineering, ICECE 2010, June 26, 2010 - June 28, 2010, Wuhan, China
Fan Y.-Y.; Sang Y.-J.
收藏  |  浏览/下载:24/0  |  提交时间:2013/03/25
This paper discussed and researched the structure and algorithm of fuzzy neural network controller based on the character of fuzzy logic and neural network theory. For the nonlinear system characteristics of uncertainty  high order and hysteresis  this paper used the fuzzy neural network technology to control nonlinear system and improved the control quality obviously. Take the single inverted pendulum for example  the paper constructed the nonlinear mathematicmodel  realized the control with the method of the adaptive fuzzy neural network  and compared with control method of liner quadratic regulator  the simulation results indicate that the method of adaptive fuzzy neural network can realize the stabilization of control better without the linear model of system  and has a higher robustness. 2010 IEEE.