中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
自动化研究所 [4]
武汉岩土力学研究所 [2]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
古脊椎动物与古人类研... [1]
更多
采集方式
OAI收割 [13]
内容类型
期刊论文 [6]
会议论文 [5]
学位论文 [2]
发表日期
2024 [1]
2023 [1]
2022 [2]
2021 [1]
2020 [1]
2018 [1]
更多
学科主题
Engineerin... [1]
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Hybrid deep learning-based identification of microseismic events in TBM tunnelling
期刊论文
OAI收割
MEASUREMENT, 2024, 卷号: 238, 页码: 20
作者:
Yin, Xin
  |  
收藏
  |  
浏览/下载:1/0
  |  
提交时间:2025/06/27
TBM tunnelling
Microseismic monitoring
Microseismic identification
Deep learning
Multi-algorithm fusion
The multi-scale fusion reconstruction algorithm of CT and CL
期刊论文
OAI收割
Physica Scripta, 2023, 卷号: 98, 期号: 10
作者:
Jia,Tong
;
Wei,Cunfeng
;
Zhu,Min
;
Shi,Rongjian
;
Wang,Zhe
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2023/10/25
computed tomography
computed laminography
multi-scale fusion reconstruction algorithm
paleontological fossils
multilayer printed circuit boards
Multi-focus image fusion dataset and algorithm test in real environment
期刊论文
OAI收割
FRONTIERS IN NEUROROBOTICS, 2022, 卷号: 16, 页码: 8
作者:
Liu, Shuaiqi
;
Peng, Weijian
;
Jiang, Wenjing
;
Yang, Yang
;
Zhao, Jie
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2022/12/27
image fusion
multi-focus image fusion dataset
image preprocessing
multi-focus image fusion algorithm test
real environment
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm
期刊论文
OAI收割
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2022, 卷号: 14, 期号: 3, 页码: 798
作者:
Huang, Xing
;
Zhang, Quantai
;
Liu, Quansheng
;
Liu, Xuewei
;
Liu, Bin
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2023/08/02
Tunnel boring machine (TBM)
Real-time cutter-head torque prediction
Bidirectional long short-term memory (BLSTM)
Bayesian optimization
Multi-algorithm fusion optimization
Incremental learning
The Assessment of Upper-Limb Spasticity Based on a Multi-Layer Process Using a Portable Measurement System
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 卷号: 29, 页码: 2242-2251
作者:
Wang, Chen
;
Peng, Liang
;
Hou, Zeng-Guang
;
Zhang, Pu
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2021/12/28
Spasticity quantification
portable assessment device
modified genetic algorithm
ensemble empirical mode decomposition (EEMD)
multi-layer fusion
Unsupervised variational auto-encoder hash algorithm based on multi-channel feature fusion
会议论文
OAI收割
Osaka, Japan, 2020-05-19
作者:
Wang, Huanting
;
Qu, Bo
;
Lu, Xiaoqiang
;
Chen, Yaxiong
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2020/08/21
Multi-channel feature fusion
Unsupervised hashing algorithm
VAE
Image retrieval
Infrared and visual image fusion using LNSST and an adaptive dual-channel PCNN with triple-linking strength
期刊论文
OAI收割
Neurocomputing, 2018, 卷号: 310, 页码: 135-147
作者:
Cheng, B. Y.
;
Jin, L. X.
;
Li, G. N.
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2019/09/17
LNSST
ATD-PCNN
Image fusion
Singular value decomposition
Auxiliary
linking strength
Triple-linking strength
sparse representation
shearlet transform
multi-focus
feature-extraction
neural-network
domain
algorithm
decomposition
Computer Science
Study on time registration method for photoelectric theodolite data fusion (EI CONFERENCE)
会议论文
OAI收割
10th World Congress on Intelligent Control and Automation, WCICA 2012, July 6, 2012 - July 8, 2012, Beijing, China
Yang H.-T.
;
Gao H.-B.
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/03/25
In range measurement
theodolite and radar constitute a real-time tracking system at different sites to track the same target in the air and get useful information exactly and timely. As the optical theodolite and radar have different sampling frequency and measurement system
the data is sent to the fusion center is asynchronous. This paper proposed a time registration method based on multi-sensor data using Wavelet neural network algorithm
which not only better solved the basic problems of theodolite fusion tracking but also improve the efficiency of data fusion. Simulation experiment and comparison with other time registration method have shown the advantage of this method. 2012 IEEE.
基于进化算法的工件视觉定位及其在工业机器人中的应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
作者:
刘伟
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2015/09/02
进化算法
工件视觉定位
多特征融合
监督学习
高精度装配
Evolutionary Algorithm
Visual localization
Multi-feature fusion
Supervised learning
High-precision assembly
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wu Z.-G.
;
Wang M.-J.
;
Han G.-L.
收藏
  |  
浏览/下载:78/0
  |  
提交时间:2013/03/25
Being an efficient method of information fusion
image fusion has been used in many fields such as machine vision
medical diagnosis
military applications and remote sensing.In this paper
Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing
including segmentation
target recognition et al.
and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First
the two original images are decomposed by wavelet transform. Then
based on the PCNN
a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength
so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So
the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment
the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range
which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore
by this algorithm
the threshold adjusting constant is estimated by appointed iteration number. Furthermore
In order to sufficient reflect order of the firing time
the threshold adjusting constant is estimated by appointed iteration number. So after the iteration achieved
each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules
the experiments upon Multi-focus image are done. Moreover
comparative results of evaluating fusion quality are listed. The experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image. 2011 SPIE.