中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [2]
合肥物质科学研究院 [2]
计算技术研究所 [1]
心理研究所 [1]
软件研究所 [1]
更多
采集方式
OAI收割 [11]
内容类型
期刊论文 [7]
会议论文 [3]
学位论文 [1]
发表日期
2024 [1]
2023 [1]
2022 [1]
2019 [1]
2017 [1]
2016 [2]
更多
学科主题
安全科学技术 [1]
核科学技术 [1]
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Adaptive-weighted deep multi-view clustering with uniform scale representation
期刊论文
OAI收割
NEURAL NETWORKS, 2024, 卷号: 171, 页码: 114-126
作者:
Chen, Rui
;
Tang, Yongqiang
;
Zhang, Wensheng
;
Feng, Wenlong
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2024/02/21
Multi-view clustering
Deep clustering
Adaptive-weighted learning
Uniform scale representation
Depth-Aware Multi-Person 3D Pose Estimation With Multi-Scale Waterfall Representations
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 卷号: 25, 页码: 1439-1451
作者:
Shen, Tianyu
;
Li, Deqi
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2023/11/17
Three-dimensional displays
Pose estimation
Feature extraction
Location awareness
Cameras
Semantics
Solid modeling
Human depth perceiving
multi-person 3d pose estimation
multi-scale representation
occlusion handling
A Deep Network Based on Wavelet Transform for Image Compressed Sensing
期刊论文
OAI收割
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022
作者:
Yin, Zhu
;
Wu, Zhongcheng
;
Zhang, Jun
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2022/12/23
Compressed sensing
Sparse representation
Sampling network
Multi-scale residual
Reconstruction network
Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 卷号: 41, 期号: 10, 页码: 2333-2348
作者:
Han, Hu
;
Li, Jie
;
Jain, Anil K.
;
Shan, Shiguang
;
Chen, Xilin
  |  
收藏
  |  
浏览/下载:77/0
  |  
提交时间:2019/12/10
Large-scale tattoo search
joint detection and representation learning
sketch based search
multi-task learning
MFC: A Multi-scale Fully Convolutional Approach for Visual Instance Retrieval
会议论文
OAI收割
Hong Kong, 10-14 July 2017
作者:
Hao, Jiedong
;
Wang, Wei
;
Dong, Jing
;
Tan, Tieniu
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2018/05/31
Visual Instance Retrieval
Image Resizing Strategy
Multi-scale Representation
Fully Convolutional Neural Network
Visualizing and Analyzing Video Content With Interactive Scalable Maps
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 卷号: 18, 期号: 11, 页码: 2171-2183
作者:
Ma, Cui-Xia
;
Liu, Yong-Jin
;
Zhao, Guozhen
;
Wang, Hong-An
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2016/12/26
Interaction
map metaphor
multi-scale representation
video visualization and analysis
Visualizing and Analyzing Video Content With Interactive Scalable Maps
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 卷号: 18, 期号: 11, 页码: 2171-2183
Ma, CX
;
Liu, YJ
;
Zhao, GZ
;
Wang, HA
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2016/12/09
Interaction
map metaphor
multi-scale representation
video visualization and analysis
指纹识别系统中假指纹检测技术的研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2015
作者:
贾晓飞
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2015/09/02
系统安全性
假指纹检测
稀疏表示
多尺度局部二模式模型
未知材料制作的假指纹
System Security
Fake Fingerprint Detection
Sparse Representation
Multi-scale LBP
Artifacts Made of Unknown Materials
Angular Pattern and Binary Angular Pattern for Shape Retrieval
期刊论文
OAI收割
ieee transactions on image processing, 2014, 卷号: 23, 期号: 3, 页码: 1118-1127
作者:
Rong-Xiang Hu
;
Wei Jia
;
Haibin Ling
;
Yang Zhao
;
Jie Gui
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2015/12/30
Shape retrieval
angular features
binary pattern
multi-scale representation
Image coding using wavelet-based compressive sampling (EI CONFERENCE)
会议论文
OAI收割
2012 5th International Symposium on Computational Intelligence and Design, ISCID 2012, October 28, 2012 - October 29, 2012, Hangzhou, China
作者:
Li J.
;
Li J.
;
Li J.
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2013/03/25
In this paper
we proposed a novel coding scheme is proposed using wavelet-based CS framework for nature image. First
two-dimension discrete wavelet transform (DWT) is applied to a nature image for sparse representation. After multi-scale DWT
the low-frequency sub-band and high-frequency sub-bands are re-sampled separately. According to the statistical dependences among DWT coefficients
we allocate different measurements to low- and high-frequency component. Then
the measurements samples can be quantized. The quantize samples are entropy coded and forward correct coding (FEC). Finally
the compressed streams are transmitted. At the decoder
one can simply reconstruct the image via l1 minimization. Experimental results show that the proposed wavelet-based CS scheme achieves better compression performance against the relevant existing solutions.