中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
沈阳自动化研究所 [6]
合肥物质科学研究院 [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [10]
内容类型
会议论文 [5]
期刊论文 [5]
发表日期
2021 [1]
2020 [3]
2019 [1]
2016 [2]
2014 [1]
2010 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Review on light vision detection of surface obstacles for USV
会议论文
OAI收割
Nanchang, China, May 28-30, 2021
作者:
Zhang, Chao
;
Liu, Jinqing
;
Xiao JC(肖金超)
;
Xiong JF(熊俊峰)
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2021/08/21
Unmanned surface vehicle
visible vision
obstacle detection
environment perception
Robust Negative Obstacle Detection in Off-Road Environments Using Multiple LiDARs
会议论文
OAI收割
2020-4-20
作者:
Zhong ZY(钟泽宇)
;
Wang ZL(王智灵)
;
Lin LL(林玲龙)
;
Liang HW(梁华为)
;
Xu FY(徐凤煜)
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2021/12/08
obstacle detection
autonomous vehicle
point cloud
geometric feature extraction
muti-frame fusion
基于三维激光雷达的道路边界提取和障碍物检测算法
期刊论文
OAI收割
模式识别与人工智能, 2020, 卷号: 33
-
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2020/10/26
Unmanned Vehicle
3D Lidar
Road Boundary
Obstacle Detection
Point Cloud Processing
无人驾驶汽车
三维激光雷达
道路边界
障碍物检测
点云处理
Application of Improved Rapidly-exploring Random Trees (RRT) algorithm for Obstacle Avoidance of Snake-like Manipulator
会议论文
OAI收割
Beijing, China, October 13-16, 2020
作者:
Wang Z(王轸)
;
Chang J(常健)
;
Li B(李斌)
;
Wang C(王聪)
;
Liu C(刘春)
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2020/12/05
snake-like manipulator
improved Rapidly-exploring Random Trees (RRT) algorithm
obstacle avoidance
collision detection
A Multi-Heuristic A* Algorithm Based on Stagnation Detection for Path Planning of Manipulators in Cluttered Environments
期刊论文
OAI收割
IEEE ACCESS, 2019, 卷号: 7, 页码: 135870-135881
作者:
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2020/03/30
Path planning
obstacle avoidance
search-based planner
stagnation detection
multi-heuristic A*
Binocular Stereo Vision Based Obstacle Detection Method for Manipulator
会议论文
OAI收割
International Conference on Electrical Engineering and Automation (ICEEA), Xiamen, China, December 18-19, 2016
作者:
Liu, Qiang
;
Zhang XX(张晓雪)
;
Liu JG(刘金国)
;
Zhang T(张天)
;
Ni ZY(倪智宇)
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2017/09/12
Binocular stereo vision
Obstacle detection
Manipulator
Mobile robot obstacle avoidance algorithms based on information fusion of vision and sonar
期刊论文
OAI收割
International Journal of Future Generation Communication and Networking, 2016, 卷号: 9, 期号: 8, 页码: 111-120
作者:
Gao HW(高宏伟)
;
Wei, Qiuyang
;
Yu Y(于洋)
;
Liu JG(刘金国)
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2016/09/17
Binocular stereo vision
stereo matching
V-disparity
obstacle detection
T-S fuzzy neural network
Obstacle classification and 3D measurement in unstructured environments based on ToF cameras
期刊论文
OAI收割
SENSORS, 2014, 卷号: 14, 期号: 6, 页码: 10753-10782
作者:
Yu HS(余洪山)
;
Zhu J(朱江)
;
Wang YN(王耀南)
;
Jia, Wenyan
;
Sun, Mingui
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2014/11/03
Mobile Robotic Navigation
Obstacle Detection And Classification
Time-of-flight Camera
Region Of Interest Detection
Unstructured Environment Perception
V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain
期刊论文
OAI收割
自动化学报, 2010, 卷号: 36, 期号: 5, 页码: 667-673
作者:
Cong Y(丛杨)
;
Peng JJ(彭军舰)
;
Sun J(孙静)
;
Zhu LL(朱琳琳)
;
Tan DL(谈大龙)
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2012/05/29
Main ground disparity (MGD)
V-disparity image
obstacle detection
unmanned ground vehicle (UGV)
outdoor unstructured environment
Innovative EDL GNC scheme for precise and safe mars landing missions (EI CONFERENCE)
会议论文
OAI收割
60th International Astronautical Congress 2009, IAC 2009, October 12, 2009 - October 16, 2009, Daejeon, Korea, Republic of
作者:
Liu Y.
;
Zhang L.
;
Zhang L.
;
Liu Y.
;
Liu Y.
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2013/03/25
Future mars missions plan to land the more massive spacecrafts on the higher altitude and hazardous region
the landers should have the capability of high-precision autonomous navigation guidance and control (GNC) and automatic obstacle detection and avoidance to explore the scientific but hazardous region. The traditional deep space network (DSN) based GNC mode used in the Mars entry
descent and landing (EDL) phase has no ability to meet this goal
so the novel EDL GNC scheme is required to achieve the precise and safe Mars landing. This paper proposes the innovative Mars EDL GNC system scheme and the emphases are focused on the EDL navigation guidance and control with high landing accuracy and autonomous obstacle detection and avoidance.