中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
长春光学精密机械与物... [4]
沈阳自动化研究所 [2]
力学研究所 [1]
过程工程研究所 [1]
武汉岩土力学研究所 [1]
更多
采集方式
OAI收割 [18]
iSwitch采集 [1]
内容类型
期刊论文 [9]
会议论文 [6]
学位论文 [4]
发表日期
2024 [1]
2022 [1]
2020 [2]
2019 [2]
2014 [1]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共19条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Pantograph-Catenary Interaction Prediction Model Based on SCSA-RBF Network
期刊论文
OAI收割
APPLIED SCIENCES-BASEL, 2024, 卷号: 14, 期号: 1, 页码: 11
作者:
Wu, Mengzhen
;
Xu XH(许向红)
;
Zhang HC(张颢辰)
;
Zhou R(周睿)
;
Wang, Jianshan
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2024/02/19
pantograph-catenary interaction prediction model
pantograph-catenary contact force
SCSA-RBF network
Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network
期刊论文
OAI收割
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 卷号: 42, 期号: 2, 页码: 490-497
作者:
Li Yuan
;
Shi Yao
;
Li Shao-yuan
;
He Ming-xing
;
Zhang Chen-mu
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2022/06/15
XRF
Accurate quantitative analysis
RBF neural network model
Zinc smelting leaching slag
Intelligent modeling and monitoring of micro-droplet profiles in 3D printing
期刊论文
OAI收割
ISA TRANSACTIONS, 2020, 卷号: 105
作者:
Lin, Xin
;
Zhu, Kunpeng
;
Zhou, Jinxin
;
Fuh, Jerry Ying Hsi
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/11/30
Inkjet 3D printing
Droplet profiles
Monitoring
RBF network
Neural-Adaptive Finite-Time Formation Tracking Control of Multiple Nonholonomic Agents with a Time-Varying Target
期刊论文
OAI收割
IEEE Access, 2020, 卷号: 8, 页码: 62943-62953
作者:
Zhou, Kai-Bo
;
Wu, Xiao-Kang
;
Ge, Ming-Feng
;
Liang, Chang-Duo
;
Hu, Bing-Liang
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2020/05/19
Multiple nonholonomic agent system (MNAS)
leader-following formation tracking problem (FTP)
radial basis function (RBF) neural network
distributed controller-estimator algorithm(DCEA)
A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 卷号: 30, 期号: 11, 页码: 3433-3443
作者:
Luo, Lincong
;
Peng, Liang
;
Wang, Chen
;
Hou, Zeng-Guang
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2020/03/30
Medical treatment
Training
Task analysis
Robot sensing systems
Impedance
Trajectory
Assist as needed (AAN)
challenge level
Gaussian radial basis function (RBF) network
motor capability
rehabilitation robot
upper limb
Landslide spatial modelling using novel bivariate statistical based Naive Bayes, RBF Classifier, and RBF Network machine learning algorithms
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 卷号: 663, 期号: -, 页码: 43845
作者:
He, Qingfeng
;
Shahabi, Himan
;
Shirzadi, Ataollah
;
Li, Shaojun
;
Chen, Wei
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2020/04/08
Landslide susceptibility
Longhai area
Naive Bayes
RBF Classifier
RBF Network
Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations
期刊论文
OAI收割
NEUROCOMPUTING, 2014, 卷号: 125, 页码: 72-80
作者:
Yuan, Ruyi
;
Tan, Xiangmin
;
Fan, Guoliang
;
Yi, Jianqiang
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2015/08/12
Actuator saturation
RBF neural network
Adaptive control
Robust control
A Recognition Method of Surface Water Based on RBF Neural Network
会议论文
OAI收割
2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, China, November 15-17, 2013
作者:
Chen XL(陈雪莲)
;
Hu JT(胡静涛)
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/12/26
RBF neutral network
potential outlet
recognition of surface-water
An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 卷号: 41, 期号: 1, 页码: 107-117
作者:
Xu, Yanwu
;
Cao, Xianbin
;
Qiao, Hong
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2015/08/12
Efficient classification
false-positive rate (FPR)
pedestrian detection
performance evaluation
radial basis function (RBF) neural network.
Study of experimental design and Response Surface method for surrogate model of computational simulation (EI CONFERENCE)
会议论文
OAI收割
2nd Annual Conference on Electrical and Control Engineering, ICECE 2011, September 16, 2011 - September 18, 2011, Yichang, China
Xi R.
;
Jia H.
;
Xiao Q.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
While the high-precision simulation is widely used in science and technology
Design of Experiment (DOE) based on Response Surface (RS) method can be employed in surrogate model to reduce the cost and error. In order to illustrate the relationship between parameters and response features
several DOE methods and Response Surface (RS) method are studied. The author used polynomial regression and RBF neural network based on orthogonal array to build a rocket aerodynamic discipline surrogate model respectively which proved their feasibility. From the results of the test case
conclusion is drawn that characteristic as well as acclimatization of DOE methods and different approximation should be considered for different issues
so the factors of cost and accuracy could reach a balance synthetically. 2011 IEEE.