中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共18条,第1-10条 帮助

条数/页: 排序方式:
Research on Fault Diagnosis Method of Rod Pumping Wells Based on CNN_APRCSO_SVM 会议论文  OAI收割
Chicago, May 26-28, 2021
作者:  
Wang MX(王明新);  Zang CZ(臧传治);  Ji ZP(纪振平);  He YP(贺云鹏);  Zeng P(曾鹏)
  |  收藏  |  浏览/下载:44/0  |  提交时间:2021/08/21
Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine 期刊论文  OAI收割
MOLECULES, 2020, 卷号: 25
作者:  
Chen, Yunan;  Yang, Ruifang;  Zhao, Nanjing;  Zhu, Wei;  Chen, Xiaowei
  |  收藏  |  浏览/下载:93/0  |  提交时间:2020/12/28
RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction 期刊论文  OAI收割
RNA BIOLOGY, 2017, 卷号: 14, 期号: 7, 页码: 952-962
作者:  
Chen, Xing;  Wu, Qiao-Feng;  Yan, Gui-Ying
  |  收藏  |  浏览/下载:25/0  |  提交时间:2018/07/30
Multivariate Mean Shift Diagnostic Model Based on Support Vector Machine 会议论文  OAI收割
Hawaii, USA, July 31 - August 4, 2017
作者:  
Cai YJ(蔡亚军);  Wang Y(王宇);  Chen SH(陈书宏)
  |  收藏  |  浏览/下载:41/0  |  提交时间:2018/10/08
Design of human-computer interaction control system based on hand-gesture recognition 会议论文  OAI收割
32nd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2017, Hefei, China, May 19-21, 2017
作者:  
Liu JG(刘金国);  Zhao ZQ(赵梓淇);  Wang ZH(王志恒);  Cao, Jiangtao
  |  收藏  |  浏览/下载:30/0  |  提交时间:2017/08/20
SEMG based movement quantitative estimation of joins using SVM method with gravitational search algorithm 会议论文  OAI收割
27th Chinese Control and Decision Conference, CCDC 2015, Qingdao, China, May 23-25, 2015
作者:  
Zhao XG(赵新刚);  Liu, Dongsheng
收藏  |  浏览/下载:17/0  |  提交时间:2015/11/18
基于GA-SVM回归的成矿有利度预测方法探讨/Discussion on Prediction Method for the Contribution Degrees to the Metallogenesis Based on GA-SVM Regression[J] 期刊论文  OAI收割
新疆地质, 2014, 卷号: 4, 页码: 546-551
作者:  
李东;  周可法;  孙卫东;  王金林;  吴艳爽
  |  收藏  |  浏览/下载:28/0  |  提交时间:2017/12/29
Application of GA-SVM method with parameter optimization for landslide development prediction 期刊论文  OAI收割
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2014, 卷号: 14, 期号: 3, 页码: 525-533
作者:  
Li, X. Z.;  Kong, J. M.
收藏  |  浏览/下载:37/0  |  提交时间:2014/12/02
A SVM-kNN method for quasar-star classification 期刊论文  OAI收割
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 卷号: 56, 期号: 6, 页码: 1227-1234
作者:  
Peng NanBo;  Zhang YanXia;  Zhao YongHeng
收藏  |  浏览/下载:13/0  |  提交时间:2016/11/17
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:  
Gao X.;  Yu P.;  Yu P.
收藏  |  浏览/下载:20/0  |  提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)  which is most widely used  is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason  Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter  firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions  a weight and mutation particle swam optimization algorithm was proposed  in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last  a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment  which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.