中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
沈阳自动化研究所 [4]
长春光学精密机械与物... [2]
数学与系统科学研究院 [2]
国家天文台 [2]
成都山地灾害与环境研... [1]
更多
采集方式
OAI收割 [18]
内容类型
会议论文 [8]
期刊论文 [8]
学位论文 [2]
发表日期
2021 [1]
2020 [1]
2017 [3]
2015 [1]
2014 [2]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共18条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Research on Fault Diagnosis Method of Rod Pumping Wells Based on CNN_APRCSO_SVM
会议论文
OAI收割
Chicago, May 26-28, 2021
作者:
Wang MX(王明新)
;
Zang CZ(臧传治)
;
Ji ZP(纪振平)
;
He YP(贺云鹏)
;
Zeng P(曾鹏)
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2021/08/21
Rod pumping well
Fault diagnosis
Indicator diagrams
Convolutional neural network (CNN)
Support vector machine (SVM)
Chicken swarm optimization (CSO)
Algorithm optimization
Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine
期刊论文
OAI收割
MOLECULES, 2020, 卷号: 25
作者:
Chen, Yunan
;
Yang, Ruifang
;
Zhao, Nanjing
;
Zhu, Wei
;
Chen, Xiaowei
  |  
收藏
  |  
浏览/下载:93/0
  |  
提交时间:2020/12/28
concentration-emission matrix
PCA
genic algorithm
SVM
oil species recognition
RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction
期刊论文
OAI收割
RNA BIOLOGY, 2017, 卷号: 14, 期号: 7, 页码: 952-962
作者:
Chen, Xing
;
Wu, Qiao-Feng
;
Yan, Gui-Ying
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2018/07/30
Disease
disease semantic similarity
KNN algorithm
miRNAs
miRNA-disease association
SVM Ranking model
Multivariate Mean Shift Diagnostic Model Based on Support Vector Machine
会议论文
OAI收割
Hawaii, USA, July 31 - August 4, 2017
作者:
Cai YJ(蔡亚军)
;
Wang Y(王宇)
;
Chen SH(陈书宏)
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2018/10/08
Quality Monitoring
Quality Characteristics
Principal Component Analysis(Pca)
Support Vector Machine(Svm)
Modified Grid Algorithm
Design of human-computer interaction control system based on hand-gesture recognition
会议论文
OAI收割
32nd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2017, Hefei, China, May 19-21, 2017
作者:
Liu JG(刘金国)
;
Zhao ZQ(赵梓淇)
;
Wang ZH(王志恒)
;
Cao, Jiangtao
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2017/08/20
Human-Computer Interaction control system
sample robot
gesture recognition
improved PSO-SVM algorithm
SEMG based movement quantitative estimation of joins using SVM method with gravitational search algorithm
会议论文
OAI收割
27th Chinese Control and Decision Conference, CCDC 2015, Qingdao, China, May 23-25, 2015
作者:
Zhao XG(赵新刚)
;
Liu, Dongsheng
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2015/11/18
sEMG
motion estimation
SVM
gravitational search algorithm
rehabilitation robot
基于GA-SVM回归的成矿有利度预测方法探讨/Discussion on Prediction Method for the Contribution Degrees to the Metallogenesis Based on GA-SVM Regression[J]
期刊论文
OAI收割
新疆地质, 2014, 卷号: 4, 页码: 546-551
作者:
李东
;
周可法
;
孙卫东
;
王金林
;
吴艳爽
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/12/29
成矿预测 遗传算法(Ga) 支持向量机(Svm) 非线性拟合 Metallogenesis Prediction Genetic Algorithm (Ga) Support Vector Machine (Svm) Nonlinear Fitting
Application of GA-SVM method with parameter optimization for landslide development prediction
期刊论文
OAI收割
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2014, 卷号: 14, 期号: 3, 页码: 525-533
作者:
Li, X. Z.
;
Kong, J. M.
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2014/12/02
Landslide prediction
Support vector machine (SVM)
Genetic algorithm (GA)
GA-SVM
parameter optimization
A SVM-kNN method for quasar-star classification
期刊论文
OAI收割
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 卷号: 56, 期号: 6, 页码: 1227-1234
作者:
Peng NanBo
;
Zhang YanXia
;
Zhao YongHeng
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2016/11/17
classification
stars/quasars
algorithm: SVM
kNN
data analysis
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Gao X.
;
Yu P.
;
Yu P.
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)
which is most widely used
is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason
Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter
firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions
a weight and mutation particle swam optimization algorithm was proposed
in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last
a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment
which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.