中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共14条,第1-10条 帮助

条数/页: 排序方式:
SkyroadAR: An Augmented Reality System for UAVs Low-Altitude Public Air Route Visualization 期刊论文  OAI收割
DRONES, 2023, 卷号: 7, 期号: 9, 页码: 22
作者:  
Tan, Junming;  Ye, Huping;  Xu, Chenchen;  He, Hongbo;  Liao, Xiaohan
  |  收藏  |  浏览/下载:27/0  |  提交时间:2023/10/30
A Tracking Registration Method for Augmented Reality Based on Multi-modal Template Matching and Point Clouds 期刊论文  OAI收割
International Journal of Automation and Computing, 2021, 卷号: 18, 期号: 2, 页码: 288-299
作者:  
Peng-Xia Cao, Wen-Xin Li, Wei-Ping Ma
  |  收藏  |  浏览/下载:31/0  |  提交时间:2021/04/22
Tracking Registration Algorithm for Augmented Reality Based on Template Tracking 期刊论文  OAI收割
International Journal of Automation and Computing, 2020, 卷号: 17, 期号: 2, 页码: 257-266
作者:  
Peng-Xia Cao;  Wen-Xin Li;  Wei-Ping Ma
  |  收藏  |  浏览/下载:32/0  |  提交时间:2021/02/22
Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes 期刊论文  OAI收割
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 卷号: 42, 期号: 8, 页码: 3451-3463
作者:  
Wen, Zhuoman;  Kuijper, Arjan;  Fraissinet-Tachet, Matthieu;  Wang, Yanjie;  Luo, Jun
  |  收藏  |  浏览/下载:45/0  |  提交时间:2018/11/20
基于备案的数字版权追踪关键技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2014
作者:  
关虎
收藏  |  浏览/下载:143/0  |  提交时间:2015/09/02
航拍视频运动目标检测关键技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2013
作者:  
申浩
收藏  |  浏览/下载:115/0  |  提交时间:2015/09/02
Vehicle detection and tracking in airborne videos by multi-motion layer analysis 期刊论文  OAI收割
machine vision and applications, 2012, 卷号: 23, 期号: 5, 页码: 921-935
作者:  
Cao, Xianbin;  Lan, Jinhe;  Yan, Pingkun;  Li, Xuelong
收藏  |  浏览/下载:32/0  |  提交时间:2011/09/30
Study on time registration method for photoelectric theodolite data fusion (EI CONFERENCE) 会议论文  OAI收割
10th World Congress on Intelligent Control and Automation, WCICA 2012, July 6, 2012 - July 8, 2012, Beijing, China
Yang H.-T.; Gao H.-B.
收藏  |  浏览/下载:20/0  |  提交时间:2013/03/25
Image registration based on Mexican-hat wavelets and pseudo-Zernike moments (EI CONFERENCE) 会议论文  OAI收割
2012 World Automation Congress, WAC 2012, June 24, 2012 - June 28, 2012, Puerto Vallarta, Mexico
作者:  
Liu Y.;  Liu Y.;  Liu Y.
收藏  |  浏览/下载:42/0  |  提交时间:2013/03/25
Image registration is a key technique in pattern recognition and image processing  and it is widely used in many application areas such as computer vision  remote sensing  image fusion and object tracking. A method for image registration combining Mexican-hat wavelets and pseudo-Zernike moments is proposed. Firstly  feature points are extracted using scale-interaction Mexican-hat wavelets in the reference image and sensed image respectively. Then  pseudo-Zernike moments are used to match them and classical RANSAC used to eliminate the wrong matches. And then  the well match points are used to estimate the best affine transform parameters by least squares minimization. At last  the sensed image is transformed and resampled to accomplish the image registration. The experiments indicate that the proposed algorithm extracts feature points and matches them exactly and eliminates wrong matched points effectively and achieves nice registration results. 2012 TSI Press.  
A matching algorithm on statistical properties of Harris corner (EI CONFERENCE) 会议论文  OAI收割
2011 International Conference on Information and Automation, ICIA 2011, June 6, 2011 - June 8, 2011, Shenzhen, China
作者:  
He B.
收藏  |  浏览/下载:31/0  |  提交时间:2013/03/25
The fundamental goal of target recognition and video tracking is to match target template with source image. Most matching methods are based on image intensity or multi-feature points. And the latter method is more popular for its high accuracy and small calculation. Image Registration Based on Feature Points focus on effective feature extraction of image points and paradigm. Harris corner in the image rotation  gray  noise and viewpoint change conditions  has an ideal match results  is more recent application of one feature point. This paper extract the Harris corner deviation and covariance firstly  experiments show that the two features exclusive  then applied them to image registration for the first time. A set of actual images have shown  this proposed method not only overcomes the complicated background  gray uneven distribution problems  but also pan and zoom the image has a good resistance. 2011 IEEE.