中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2021 [2]
2019 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Multi-Level Multi-Modal Cross-Attention Network for Fake News Detection
期刊论文
OAI收割
IEEE ACCESS, 2021, 卷号: 9, 页码: 132363-132373
作者:
Ying, Long
;
Yu, Hui
;
Wang, Jinguang
;
Ji, Yongze
;
Qian, Shengsheng
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/11/03
Feature extraction
Semantics
Visualization
Task analysis
Bit error rate
Convolutional neural networks
Social networking (online)
Multi-level neural networks
fake news detection
multi-modal fusion
A Fusion Measurement Method for Nano-displacement Based on Kalman Filter and Neural Network
期刊论文
OAI收割
International Journal of Robotics and Automation, 2021, 卷号: 36, 页码: 1-9
作者:
Zhang ZL(张灼亮)
;
Zhou C(周超)
;
Du ZM(杜章铭)
;
Deng L(邓露)
;
Cao ZQ(曹志强)
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2023/06/26
multi-rate fusion
state block
convolution filtering
nanoscale measurement
A Measuring Method for Nano Displacement Based on Fusing Data of Self-Sensing and Time-Digit-Conversion
期刊论文
OAI收割
IEEE ACCESS, 2019, 卷号: 7, 页码: 183070-183080
作者:
Du, Zhangming
;
Zhou, Chao
;
Zhang, Tianlu
;
Deng, Lu
;
Cao, Zhiqiang
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2020/03/30
Nano-scale measurement
multi-rate fusion
self-sensing
TDC
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.