中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
遥感与数字地球研究所 [2]
长春光学精密机械与物... [1]
中国科学院大学 [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [5]
iSwitch采集 [1]
内容类型
期刊论文 [5]
会议论文 [1]
发表日期
2021 [1]
2020 [1]
2016 [1]
2015 [2]
2008 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 卷号: 17, 期号: 2, 页码: 1220-1230
作者:
Fan, Junfeng
;
Deng, Sai
;
Ma, Yunkai
;
Zhou, Chao
;
Jing, Fengshui
  |  
收藏
  |  
浏览/下载:54/0
  |  
提交时间:2021/03/02
Welding
Target tracking
Vision sensors
Feature extraction
Cameras
Robots
Convolution
Efficient convolution operator (ECO)
particle filter (PF)
robot intelligent welding
seam feature acquisition
structured light vision
An underwater mining navigation method based on an improved particle filter
期刊论文
OAI收割
中国科学院大学学报, 2020, 卷号: 37, 期号: 4, 页码: 507-515
作者:
Zhang ZH(张志慧)
;
Feng YB(冯迎宾)
;
Li ZG(李智刚)
;
Zhao XH(赵小虎)
;
Zhang ZH(张志慧)
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/07/11
particle filter ( PF)
resampling
underwater mining navigation
particle degeneration
particle impoverishment
A comparative study based on the least square parameter identification method for state of charge estimation of a lifepo4 battery pack using three model-based algorithms for electric vehicles
期刊论文
iSwitch采集
Energies, 2016, 卷号: 9, 期号: 9, 页码: 16
作者:
Zahid, Taimoor
;
Li, Weimin
收藏
  |  
浏览/下载:55/0
  |  
提交时间:2019/05/09
Battery management system
Lithium ion batteries
State of charge (soc) estimation
Extended kalman filter (ekf)
Unscented kalman filter (ukf)
Particle filter (pf)
A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification
期刊论文
OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 卷号: 12, 期号: 9, 页码: 414-425
作者:
Insom, Patcharin
;
Cao, Chunxiang
;
Boonsrimuang, Pisit
;
Liu, Di
;
Saokarn, Apitach
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2016/04/20
Flooding classification
particle filter (PF)
Radarsat
support vector machine (SVM)
An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method
期刊论文
OAI收割
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 卷号: 8, 期号: 2, 页码: 133-152
作者:
Bi, Haiyun
;
Ma, Jianwen
;
Wang, Fangjian
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2016/04/20
Data assimilation (DA)
ensemble Kalman filter (EnKF)
Markov Chain Monte Carlo (MCMC)
particle filter (PF)
Contour extracting with combination particle filtering and em algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging, ISPDI 2007: Related Technologies and Applications, September 9, 2007 - September 12, 2007, Beijing, China
Meng B.
;
Zhu M.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/03/25
The problem of extracting continuous structures from images is a difficult issue in early pattern recognition and image processings[1]. Tracking with contours in a filtering framework requires a dynamical model for prediction. Recently
Particle filter
is widely used because its multiple hypotheses and versatility within framework. However
the good choice of the propagation function is still its main problem. In this paper
an improved particle filter
EM-PF algorithm is proposed which using the EM (Expectation-Maximization) algorithm to learn the dynamical models. The EM algorithm can explicitly learn the parameters of the dynamical models from training sequences. The advantage of using the EM algorithm in particle filter is that it is capable of improve tracking contour by having accurate model parameters. Though the experiment results
we show how our EM-PF can be applied to produces more robust and accurate extracting.