中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共6条,第1-6条 帮助

条数/页: 排序方式:
Seam Feature Point Acquisition Based on Efficient Convolution Operator and Particle Filter in GMAW 期刊论文  OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 卷号: 17, 期号: 2, 页码: 1220-1230
作者:  
Fan, Junfeng;  Deng, Sai;  Ma, Yunkai;  Zhou, Chao;  Jing, Fengshui
  |  收藏  |  浏览/下载:54/0  |  提交时间:2021/03/02
An underwater mining navigation method based on an improved particle filter 期刊论文  OAI收割
中国科学院大学学报, 2020, 卷号: 37, 期号: 4, 页码: 507-515
作者:  
Zhang ZH(张志慧);  Feng YB(冯迎宾);  Li ZG(李智刚);  Zhao XH(赵小虎);  Zhang ZH(张志慧)
  |  收藏  |  浏览/下载:20/0  |  提交时间:2020/07/11
A comparative study based on the least square parameter identification method for state of charge estimation of a lifepo4 battery pack using three model-based algorithms for electric vehicles 期刊论文  iSwitch采集
Energies, 2016, 卷号: 9, 期号: 9, 页码: 16
作者:  
Zahid, Taimoor;  Li, Weimin
收藏  |  浏览/下载:55/0  |  提交时间:2019/05/09
A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification 期刊论文  OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 卷号: 12, 期号: 9, 页码: 414-425
作者:  
Insom, Patcharin;  Cao, Chunxiang;  Boonsrimuang, Pisit;  Liu, Di;  Saokarn, Apitach
收藏  |  浏览/下载:33/0  |  提交时间:2016/04/20
An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method 期刊论文  OAI收割
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 卷号: 8, 期号: 2, 页码: 133-152
作者:  
Bi, Haiyun;  Ma, Jianwen;  Wang, Fangjian
收藏  |  浏览/下载:33/0  |  提交时间:2016/04/20
Contour extracting with combination particle filtering and em algorithm (EI CONFERENCE) 会议论文  OAI收割
International Symposium on Photoelectronic Detection and Imaging, ISPDI 2007: Related Technologies and Applications, September 9, 2007 - September 12, 2007, Beijing, China
Meng B.; Zhu M.
收藏  |  浏览/下载:25/0  |  提交时间:2013/03/25
The problem of extracting continuous structures from images is a difficult issue in early pattern recognition and image processings[1]. Tracking with contours in a filtering framework requires a dynamical model for prediction. Recently  Particle filter  is widely used because its multiple hypotheses and versatility within framework. However  the good choice of the propagation function is still its main problem. In this paper  an improved particle filter  EM-PF algorithm is proposed which using the EM (Expectation-Maximization) algorithm to learn the dynamical models. The EM algorithm can explicitly learn the parameters of the dynamical models from training sequences. The advantage of using the EM algorithm in particle filter is that it is capable of improve tracking contour by having accurate model parameters. Though the experiment results  we show how our EM-PF can be applied to produces more robust and accurate extracting.