中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [5]
长春光学精密机械与物... [2]
西安光学精密机械研究... [1]
采集方式
OAI收割 [8]
内容类型
期刊论文 [5]
会议论文 [2]
学位论文 [1]
发表日期
2020 [2]
2019 [1]
2015 [1]
2012 [1]
2011 [1]
2010 [1]
更多
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Neural-Adaptive Finite-Time Formation Tracking Control of Multiple Nonholonomic Agents with a Time-Varying Target
期刊论文
OAI收割
IEEE Access, 2020, 卷号: 8, 页码: 62943-62953
作者:
Zhou, Kai-Bo
;
Wu, Xiao-Kang
;
Ge, Ming-Feng
;
Liang, Chang-Duo
;
Hu, Bing-Liang
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2020/05/19
Multiple nonholonomic agent system (MNAS)
leader-following formation tracking problem (FTP)
radial basis function (RBF) neural network
distributed controller-estimator algorithm(DCEA)
Recovery of Collided RFID Tags With Frequency Drift on Physical Layer
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2020, 卷号: 7, 期号: 6, 页码: 1593-1603
作者:
Junzhi Li
;
Haifeng Wu
;
Yu Zeng
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2021/03/11
Frequency drift
radial basis function (RBF)
radio frequency identification (RFID)
separation efficiency
tag collision
A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 卷号: 30, 期号: 11, 页码: 3433-3443
作者:
Luo, Lincong
;
Peng, Liang
;
Wang, Chen
;
Hou, Zeng-Guang
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2020/03/30
Medical treatment
Training
Task analysis
Robot sensing systems
Impedance
Trajectory
Assist as needed (AAN)
challenge level
Gaussian radial basis function (RBF) network
motor capability
rehabilitation robot
upper limb
Generalization Performance of Radial Basis Function Networks
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 卷号: 26, 期号: 3, 页码: 551-564
作者:
Lei, Yunwen
;
Ding, Lixin
;
Zhang, Wensheng
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2015/11/08
Learning theory
local Rademacher complexity
radial basis function (RBF) networks
structural risk minimization (SRM)
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Gao X.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)
which is most widely used
is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason
Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter
firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions
a weight and mutation particle swam optimization algorithm was proposed
in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last
a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment
which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.
An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 卷号: 41, 期号: 1, 页码: 107-117
作者:
Xu, Yanwu
;
Cao, Xianbin
;
Qiao, Hong
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2015/08/12
Efficient classification
false-positive rate (FPR)
pedestrian detection
performance evaluation
radial basis function (RBF) neural network.
图像序列中的光流估计与运动分割
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
马东民
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2015/09/02
统计学习模型
马尔科夫随机场
RBF模型
约束函数选择
运动分割
图像序列
statistical modeling
markov random field
radial basis function neural network
motion selection
motion segmentation
image sequence
Space camera focusing forecast based on RBF network (EI CONFERENCE)
会议论文
OAI收割
Computational Intelligence and Intelligent Systems: 4th International Symposium, ISICA 2009, Huangshi, China, October 23-25, 2009. Proceedings, Tiergartenstrasse 17, Heidelberg, D-69121, Germany
作者:
Liu J.
;
Yu D.
;
Yu D.
;
Liu J.
;
Liu J.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
As circumstance temperature of space camera changes
flex of structural components and distortion of optical components lead to change of focal length and image quality. Radial Basis Function (RBF) network is used to approximate the complex nonlinear relation between focalization quantity
image quality
temperature level and axial temperature difference of space camera. After the RBF Network is trained with thermo-optical experiment data
temperature level and axial temperature difference could be input to the network to obtain colder value of best image position. In this way focusing forecast under different temperatures can be realized. Results of focusing forecast experiment validate this method. 2009 Springer-Verlag Berlin Heidelberg.