中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [5]
会议论文 [1]
发表日期
2022 [1]
2021 [1]
2016 [2]
2015 [1]
2013 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Large-Scale Semantic Scene Understanding with Cross-Correction Representation
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 23, 页码: 15
作者:
Zhao, Yuehua
;
Zhang, Jiguang
;
Ma, Jie
;
Xu, Shibiao
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2023/03/20
point cloud
large-scale semantic segmentation
spatial geometric
semantic context
cross-correction
Context-Aware Dynamic Feature Extraction for 3D Object Detection in Point Clouds
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 页码: 13
作者:
Tian, Yonglin
;
Huang, Lichao
;
Yu, Hui
;
Wu, Xiangbin
;
Li, Xuesong
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2022/01/27
Three-dimensional displays
Feature extraction
Convolution
Proposals
Kernel
Laser radar
Semantics
Point clouds
3D detection
dynamic network
context features
Background of shape contexts for point matching
期刊论文
OAI收割
PATTERN RECOGNITION LETTERS, 2016, 卷号: 84, 期号: 无, 页码: 114-119
作者:
Qian, Deheng
;
Chen, Tianshi
;
Qiao, Hong
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2016/12/07
Point matching
Shape context
Local feature
Background of shape contexts for point matching
期刊论文
OAI收割
PATTERN RECOGNITION LETTERS, 2016, 卷号: 84, 页码: 114-119
作者:
Qian, Deheng
;
Chen, Tianshi
;
Qiao, Hong
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2019/12/12
Point matching
Shape context
Local feature
Finding logos in real-world images with point-context representation-based region search
期刊论文
OAI收割
MULTIMEDIA SYSTEMS, 2015, 卷号: 21, 期号: 3, 页码: 301-311
作者:
Wang, Jinqiao
;
Fu, Jianlong
;
Lu, Hanqing
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2015/09/17
Logo recognition
Point-context
Region search
A shape context based Hausdorff similarity measure in image matching
会议论文
OAI收割
5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Infrared Imaging and Applications, Beijing, June 25-27, 2013
作者:
Ma TL(马天磊)
;
Liu YP(刘云鹏)
;
Shi ZL(史泽林)
;
Yin J(尹健)
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/12/26
The traditional Hausdorff measure, which uses Euclidean distance metric (L2 norm) to define the distance between coordinates of any two points, has poor performance in the presence of the rotation and scale change although it is robust to the noise and occlusion. To address the problem, we define a novel similarity function including two parts in this paper. The first part is Hausdorff distance between shapes which is calculated by exploiting shape context that is rotation and scale invariant as the distance metric. The second part is the cost of matching between centroids. Unlike the traditional method, we use the centroid as reference point to obtain its shape context that embodies global information of the shape. Experiment results demonstrate that the function value between shapes is rotation and scale invariant and the matching accuracy of our algorithm is higher than that of previously proposed algorithm on the MEPG-7 database.