中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [4]
自动化研究所 [3]
金属研究所 [2]
地理科学与资源研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [12]
内容类型
期刊论文 [11]
会议论文 [1]
发表日期
2024 [6]
2023 [1]
2022 [1]
2018 [1]
2011 [1]
2010 [2]
更多
学科主题
Chemistry [1]
Engineerin... [1]
Instrument... [1]
筛选
浏览/检索结果:
共12条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
UAV-Enabled Federated Learning in Dynamic Environments: Efficiency and Security Trade-Off
期刊论文
OAI收割
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 卷号: 73, 期号: 5, 页码: 6993-7006
作者:
Fan, Xiaokun
;
Chen, Yali
;
Liu, Min
;
Sun, Sheng
;
Liu, Zhuotao
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/12/06
Training
Security
Autonomous aerial vehicles
Energy consumption
Resource management
Data models
Computational modeling
Deep reinforcement learning
federated learning (FL)
physical layer security
resource allocation
unmanned aerial vehicle (UAV)
Adaptive Bitrate Video Caching in UAV-Assisted MEC Networks Based on Distributionally Robust Optimization
期刊论文
OAI收割
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 卷号: 23, 期号: 5, 页码: 5245-5259
作者:
Chen, Yali
;
Liu, Min
;
Ai, Bo
;
Wang, Yuwei
;
Sun, Sheng
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/12/06
Streaming media
Autonomous aerial vehicles
Optimization
Bit rate
Servers
Robustness
Uncertainty
Adaptive bitrate video caching
mobile edge computing (MEC)
optimization under uncertainty
unmanned aerial vehicle (UAV)
UAV Trajectory Optimization for Large-Scale and Low-Power Data Collection: An Attention-Reinforced Learning Scheme
期刊论文
OAI收割
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 卷号: 23, 期号: 4, 页码: 3009-3024
作者:
Zhu, Yuchen
;
Yang, Bo
;
Liu, Min
;
Li, Zhongcheng
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/12/06
Autonomous aerial vehicles
Sensors
Data collection
Energy consumption
Wireless communication
Optimization
Data models
Unmanned aerial vehicle
trajectory optimization
data collection
attention model
deep reinforcement learning
LoRa
E
3
-UAV: An Edge-Based Energy-Efficient Object Detection System for Unmanned Aerial Vehicles
期刊论文
OAI收割
IEEE INTERNET OF THINGS JOURNAL, 2024, 卷号: 11, 期号: 3, 页码: 4398-4413
作者:
Suo, Jiashun
;
Zhang, Xingzhou
;
Shi, Weisong
;
Zhou, Wei
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2024/05/20
Object detection
Energy consumption
Task analysis
Image edge detection
Autonomous aerial vehicles
Detectors
Detection algorithms
Edge computing
edge intelligence
energy efficiency
object detection system
unmanned aerial vehicle (UAV)
PDD: Post-Disaster Dataset for Human Detection and Performance Evaluation
期刊论文
OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 卷号: 73, 页码: 14
作者:
Song, Haoqian
;
Song, Weiwei
;
Cheng, Long
;
Wei, Yue
;
Cui, Jinqiang
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2024/05/30
Detection algorithms
Remote sensing
YOLO
Cameras
Autonomous aerial vehicles
Convolutional neural networks
Search problems
Human detection
multiview image
performance evaluation
post-disaster ruins scene
unmanned aerial vehicle (UAV) search and rescue (SAR)
PCCN-MSS: Parallel Convolutional Classification Network Combined Multi-Spatial Scale and Spectral Features for UAV-Borne Hyperspectral With High Spatial Resolution Imagery
期刊论文
OAI收割
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 卷号: 17, 页码: 6529-6543
作者:
Jiang, Linhuan
;
Zhang, Zhen
;
Tang, Bo-Hui
;
Huang, Lehao
;
Zhang, Bingru
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/05/06
Feature extraction
Convolutional neural networks
Hyperspectral imaging
Data mining
Computational modeling
Autonomous aerial vehicles
Convolution
Feature pyramid networks (FPNs)
image classification
parallel convolutional classification network
spectral attention (SA)
unmanned aerial vehicle (UAV)-borne hyperspectral imagery
Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters
期刊论文
OAI收割
SENSORS, 2023, 卷号: 23, 期号: 8, 页码: 3948
作者:
Luo, Wei
;
Zhao, Yongxiang
;
Shao, Quanqin
;
Li, Xiaoliang
;
Wang, Dongliang
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2023/06/10
Procapra przewalskii protection
autonomous unmanned aerial vehicle
object tracking
Kalman filter
long and short-term memory
Autonomous Maneuver Decisions via Transfer Learning Pigeon-Inspired Optimization for UCAVs in Dogfight Engagements
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2022, 卷号: 9, 期号: 9, 页码: 1639-1657
作者:
Wanying Ruan
;
Haibin Duan
;
Yimin Deng
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2022/08/19
Autonomous maneuver decisions
dogfight engagement
game mixed strategy
transfer learning pigeon-inspired optimization (TLPIO)
unmanned combat aerial vehicle (UCAV)
A Basal Ganglia Network Centric Reinforcement Learning Model and Its Application in Unmanned Aerial Vehicle
期刊论文
OAI收割
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 卷号: 10, 期号: 2, 页码: 290-303
作者:
Zeng, Yi
;
Wang, Guixiang
;
Xu, Bo
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2019/12/16
Basal ganglia (BG) network
brain-inspired intelligence
precise encoding
reinforcement learning model
unmanned aerial vehicle (UAV) autonomous learning
Robust trajectory tracking control of autonomous quad-rotor UAV based on double loop frame (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Materials, Mechatronics and Automation, ICMMA 2011, January 15, 2011 - January 16, 2011, Melbourne, VIC, Australia
作者:
Sun Q.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
This paper deals with the under-actuated characteristic of a quad-rotor unmanned aerial vehicle (UAV). By designing the double loop configuration
the autonomous trajectory tracking is realized. The model uncertainty
external disturbance and the senor noise are also taken into consideration. Then the H controller is put forward in the inner loop. An optimal stability augmentation control (SAC) method is used to stabilize the horizon position and keep it away from oscillation. By calculating the nonlinear decouple map
control quantity is converted to the speeds of the four rotors. At last some simulation results and the prototype implementation prove that the control method is effective.