中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [4]
长春光学精密机械与物... [1]
中国科学院大学 [1]
重庆绿色智能技术研究... [1]
武汉岩土力学研究所 [1]
西安光学精密机械研究... [1]
更多
采集方式
OAI收割 [8]
iSwitch采集 [1]
内容类型
期刊论文 [8]
会议论文 [1]
发表日期
2023 [1]
2022 [1]
2021 [1]
2020 [1]
2019 [1]
2017 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Infrared small target segmentation networks: A survey
期刊论文
OAI收割
PATTERN RECOGNITION, 2023, 卷号: 143
作者:
Kou, Renke
;
Wang, Chunping
;
Peng, Zhenming
;
Zhao, Zhihe
;
Chen, Yaohong
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2023/08/23
Infrared small target
Characteristic analysis
Segmentation network
Deep learning
Collaborative technology
Data-driven
False alarm
Missed detection
A Data-Characteristic-Aware Latent Factor Model for Web Services QoS Prediction
期刊论文
OAI收割
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 卷号: 34, 期号: 6, 页码: 2525-2538
作者:
Wu, Di
;
Luo, Xin
;
Shang, Mingsheng
;
He, Yi
;
Wang, Guoyin
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2022/08/22
Web Service
quality-of-service
QoS
latent factor analysis
density peak
data-characteristic-aware
missing data
big data
topological neighborhood
noise data
service selection
data science
Multiscale mechanical properties of shales: grid nanoindentation and statistical analytics
期刊论文
OAI收割
ACTA GEOTECHNICA, 2021, 期号: -, 页码: 16
作者:
Du, Jianting
;
Luo, Shengmin
;
Hu, Liming
;
Guo, Brandon
;
Guo, Dongdong
  |  
收藏
  |  
浏览/下载:87/0
  |  
提交时间:2021/09/01
Characteristic length
Data analytics
Elastic properties
Grid nanoindentation
Shale
Statistical analysis
A decomposition-ensemble approach for tourism forecasting
期刊论文
OAI收割
ANNALS OF TOURISM RESEARCH, 2020, 卷号: 81, 页码: 16
作者:
Xie, Gang
;
Qian, Yatong
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2020/06/30
Tourism demand
Complete ensemble empirical mode decomposition with adaptive noise
Data characteristic analysis
Time series forecasting
Forecasting container throughput based on wavelet transforms within a decomposition-ensemble methodology: a case study of China
期刊论文
OAI收割
MARITIME POLICY & MANAGEMENT, 2019, 卷号: 46, 期号: 2, 页码: 178-200
作者:
Xie, Gang
;
Qian, Yatong
;
Yang, Hewei
  |  
收藏
  |  
浏览/下载:49/0
  |  
提交时间:2019/03/05
Container throughput
wavelet transform
data characteristic analysis
time series forecasting
decomposition-ensemble methodology
Data characteristic analysis and model selection for container throughput forecasting within a decomposition-ensemble methodology
期刊论文
OAI收割
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2017, 卷号: 108, 页码: 160-178
作者:
Xie, Gang
;
Zhang, Ning
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2018/07/25
Container throughput
Data characteristic analysis
Model selection
Time series forecasting
Decomposition-ensemble methodology
A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting
期刊论文
OAI收割
ANNALS OF OPERATIONS RESEARCH, 2015, 卷号: 234, 期号: 1, 页码: 111-132
作者:
Tang, Ling
;
Wang, Shuai
;
He, Kaijian
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2018/07/30
Decomposition ensemble model
Data-characteristic-based modeling
Nuclear energy consumption forecasting
Time series analysis
Intelligent knowledge management
Resource allocation based on dea and modified shapley value
期刊论文
iSwitch采集
Applied mathematics and computation, 2015, 卷号: 263, 页码: 280-286
作者:
Yang, Zhihua
;
Zhang, Qianwei
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2019/05/10
Resource allocation
Dea (data envelopment analysis)
Modified shapley value
Characteristic function
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:59/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).