中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
地质与地球物理研究所 [2]
水生生物研究所 [2]
中国科学院大学 [2]
植物研究所 [2]
昆明植物研究所 [1]
更多
采集方式
OAI收割 [12]
iSwitch采集 [2]
内容类型
期刊论文 [12]
会议论文 [2]
发表日期
2024 [1]
2022 [1]
2021 [3]
2020 [1]
2017 [1]
2016 [1]
更多
学科主题
Plant Scie... [2]
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
GRLN: Gait Refined Lateral Network for gait recognition
期刊论文
OAI收割
DISPLAYS, 2024, 卷号: 84, 页码: 8
作者:
Song, Yukun
;
Mao, Xin
;
Feng, Xuxiang
;
Wang, Changwei
;
Xu, Rongtao
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2024/09/09
Adaptive feature refinement module
Coarse-to-fine
Gait recognition
Horizontally stable mapping
Identification of qGL3.5, a Novel Locus Controlling Grain Length in Rice Through Bulked Segregant Analysis and Fine Mapping
期刊论文
OAI收割
FRONTIERS IN PLANT SCIENCE, 2022, 卷号: 13
作者:
Wang, Lan
;
Liu, Yang
;
Zhao, Haiyan
;
Zheng, Yuebin
;
Bai, Feng
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2024/03/07
wild rice
grain length
BSA
fine mapping
gene cloning
Observed causative impact of fine particulate matter on acute upper respiratory disease: a comparative study in two typical cities in China
期刊论文
OAI收割
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 页码: 11
作者:
Xia, Xiaolin
;
Yao, Ling
;
Lu, Jiaying
;
Liu, Yangxiaoyue
;
Jing, Wenlong
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2021/11/05
Fine particulate matter
Health effect
Causative impact
Acute upper respiratory disease
Convergent cross mapping
Distributed lag nonlinear model
Observed causative impact of fine particulate matter on acute upper respiratory disease: a comparative study in two typical cities in China
期刊论文
OAI收割
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 页码: 11
作者:
Xia, Xiaolin
;
Yao, Ling
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/11/05
Fine particulate matter
Health effect
Causative impact
Acute upper respiratory disease
Convergent cross mapping
Distributed lag nonlinear model
Fine mapping and characterization of two novel quantitative trait loci for early seedling growth in rice
期刊论文
OAI收割
PLANTA, 2021, 卷号: 253, 期号: 2
作者:
Cheng, Peng
;
Cao, Ling-Jie
;
Bai, Chen
;
Ashikari, Motoyuki
;
Song, Xian-Jun
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2023/02/24
Early seeding growth
Leaf size
Oryza sativa
QTL fine mapping
Rice plant
Mapping the Urban Population in Residential Neighborhoods by Integrating Remote Sensing and Crowdsourcing Data
期刊论文
OAI收割
REMOTE SENSING, 2020, 卷号: 12, 期号: 19, 页码: 1-11
作者:
Jing, Chuanbao
;
Zhou, Weiqi
;
Qian, Yuguo
;
Yan, Jingli
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2021/08/31
urban population estimation
remote sensing
fine-scale
census
dasymetric mapping
nighttime light
CANDIDATE GROWTH GENES IDENTIFIED BY QTL FINE MAPPING IN BIGHEAD CARP Aristichthys nobilis
会议论文
OAI收割
Santiago de Compostela, SPAIN, JUN 21-27, 2015
作者:
Sun, Y. H.
;
Liu, H. Y.
;
Feng, X.
;
Yu, X.
;
Fu, B. D.
  |  
收藏
  |  
浏览/下载:66/0
  |  
提交时间:2019/08/01
growth trait
QTL fine mapping
growth gene
marker-assisted selection
bighead carp (Aristichthys nobilis)
QTL fine mapping and identification of candidate genes for growth-related traits in bighead carp (Hypophthalmichehys nobilis)
期刊论文
OAI收割
AQUACULTURE, 2016, 卷号: 465, 期号: 1, 页码: 134-143
作者:
Liu, Haiyang
;
Fu, Beide
;
Pang, Meixia
;
Feng, Xiu
;
Wang, Xinhua
  |  
收藏
  |  
浏览/下载:226/0
  |  
提交时间:2019/09/05
Bighead carp (Hypophthalmichthys nobilis)
QTL
Fine mapping
Candidate genes
Growth traits
Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean
期刊论文
OAI收割
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2015, 卷号: 57, 期号: 8, 页码: 722-729
作者:
Yan, Honglang
;
Wang, Hui
;
Cheng, Hao
;
Hu, Zhenbin
;
Chu, Shanshan
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2016/01/19
Association analysis
fine-mapping
linkage analysis
soybean
soybean mosaic virus
A line mapping based automatic registration algorithm of infrared and visible images
会议论文
OAI收割
5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Infrared Imaging and Applications, Beijing, June 25-27, 2013
作者:
Ai R(艾锐)
;
Shi ZL(史泽林)
;
Xu DJ(徐德江)
;
Zhang CS(张程硕)
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/12/26
There exist complex gray mapping relationships among infrared and visible images because of the different imaging mechanisms. The difficulty of infrared and visible image registration is to find a reasonable similarity definition. In this paper, we develop a novel image similarity called implicit linesegment similarity(ILS) and a registration algorithm of infrared and visible images based on ILS. Essentially, the algorithm achieves image registration by aligning the corresponding line segment features in two images. First, we extract line segment features and record their coordinate positions in one of the images, and map these line segments into the second image based on the geometric transformation model. Then we iteratively maximize the degree of similarity between the line segment features and correspondence regions in the second image to obtain the model parameters. The advantage of doing this is no need directly measuring the gray similarity between the two images. We adopt a multi-resolution analysis method to calculate the model parameters from coarse to fine on Gaussian scale space. The geometric transformation parameters are finally obtained by the improved Powell algorithm. Comparative experiments demonstrate that the proposed algorithm can effectively achieve the automatic registration for infrared and visible images, and under considerable accuracy it makes a more significant improvement on computational efficiency and anti-noise ability than previously proposed algorithms.