中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [3]
过程工程研究所 [1]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [10]
内容类型
会议论文 [4]
期刊论文 [4]
学位论文 [2]
发表日期
2022 [1]
2020 [1]
2014 [1]
2011 [3]
2010 [3]
2007 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network
期刊论文
OAI收割
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 卷号: 42, 期号: 2, 页码: 490-497
作者:
Li Yuan
;
Shi Yao
;
Li Shao-yuan
;
He Ming-xing
;
Zhang Chen-mu
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2022/06/15
XRF
Accurate quantitative analysis
RBF neural network model
Zinc smelting leaching slag
Neural-Adaptive Finite-Time Formation Tracking Control of Multiple Nonholonomic Agents with a Time-Varying Target
期刊论文
OAI收割
IEEE Access, 2020, 卷号: 8, 页码: 62943-62953
作者:
Zhou, Kai-Bo
;
Wu, Xiao-Kang
;
Ge, Ming-Feng
;
Liang, Chang-Duo
;
Hu, Bing-Liang
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2020/05/19
Multiple nonholonomic agent system (MNAS)
leader-following formation tracking problem (FTP)
radial basis function (RBF) neural network
distributed controller-estimator algorithm(DCEA)
Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations
期刊论文
OAI收割
NEUROCOMPUTING, 2014, 卷号: 125, 页码: 72-80
作者:
Yuan, Ruyi
;
Tan, Xiangmin
;
Fan, Guoliang
;
Yi, Jianqiang
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2015/08/12
Actuator saturation
RBF neural network
Adaptive control
Robust control
An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 卷号: 41, 期号: 1, 页码: 107-117
作者:
Xu, Yanwu
;
Cao, Xianbin
;
Qiao, Hong
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2015/08/12
Efficient classification
false-positive rate (FPR)
pedestrian detection
performance evaluation
radial basis function (RBF) neural network.
Study of experimental design and Response Surface method for surrogate model of computational simulation (EI CONFERENCE)
会议论文
OAI收割
2nd Annual Conference on Electrical and Control Engineering, ICECE 2011, September 16, 2011 - September 18, 2011, Yichang, China
Xi R.
;
Jia H.
;
Xiao Q.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
While the high-precision simulation is widely used in science and technology
Design of Experiment (DOE) based on Response Surface (RS) method can be employed in surrogate model to reduce the cost and error. In order to illustrate the relationship between parameters and response features
several DOE methods and Response Surface (RS) method are studied. The author used polynomial regression and RBF neural network based on orthogonal array to build a rocket aerodynamic discipline surrogate model respectively which proved their feasibility. From the results of the test case
conclusion is drawn that characteristic as well as acclimatization of DOE methods and different approximation should be considered for different issues
so the factors of cost and accuracy could reach a balance synthetically. 2011 IEEE.
Neural Network Predictive R2R Control to CMP Process
会议论文
OAI收割
2011 4th IEEE International Conference on Computer Science and Information Technology, Chengdu, China, June 10-12, 2011
作者:
Wang L(王亮)
;
Hu JT(胡静涛)
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2012/06/06
chemical mechanical polishing
RBF neural network
predictive control
run-to-run control
PSO rolling optimization
图像序列中的光流估计与运动分割
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
马东民
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2015/09/02
统计学习模型
马尔科夫随机场
RBF模型
约束函数选择
运动分割
图像序列
statistical modeling
markov random field
radial basis function neural network
motion selection
motion segmentation
image sequence
The costs prediction of AOD furnace based on improved RBF neural network (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Na T.
;
Zhang D.-J.
;
Hui L.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
In order to predict the cost
a model of cost prediction was set up based on adaptive hierarchical genetic algorithm and RBF neural network. Hierarchical genetic algorithm could optimize the topology and the parameters simultaneously. Compared with simple genetic algorithm
it has more efficiency in not only accelerating and stabilizing the parameters training but also determining the structure of the network. Adaptive crossover and mutation probability could accelerate the speed and avoid prematurity. The model was tested by five samples. The results showed that the prediction model has high prediction accuracy
which indicated that it was applicable to predict the cost by the model. 2010 IEEE.
Prediction model of molten iron endpoint temperature in AOD furnace based on RBF neural network (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Logistics Systems and Intelligent Management, ICLSIM 2010, January 9, 2010 - January 10, 2010, Harbin, China
Ma H.-T.
;
You W.
;
Chen T.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
According to Jilin Ferroalloy Factory 10-ton AOD furnace actual smelting condition
analyzes the impact factor of AOD furnace molten iron endpoint temperature
by optimizing the neural network connection weights and structure
design prediction model of molten iron endpoint temperature based on RBF neural network
using LM algorithm and 50 furnaces actual production data to train the model
and predicts another 50 furnaces molten iron temperature
Result shows that prediction model of molten iron endpoint temperature based on RBF neural network has a high accuracy
when the error of endpoint temperature is 12 C
hit rate of temperature is 82.4%. 2010 IEEE.
输出PDF建模与控制及其在火焰温度场中的应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2007
作者:
孙绪彬
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2015/09/02
锅炉温度场重建
输出概率密度函数控制
射流火焰
迭代学习控制
RBF网络
预测控制
广义系统
Boiler temperature restructure
output PDF control
jet flame
iterative learning control
RBF neural network
predictive control
singular systems