中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
深海科学与工程研究所 [1]
软件研究所 [1]
采集方式
OAI收割 [8]
内容类型
期刊论文 [5]
学位论文 [2]
会议论文 [1]
发表日期
2023 [1]
2020 [1]
2015 [2]
2011 [1]
2010 [1]
2007 [1]
更多
学科主题
Computer S... [1]
Theory & M... [1]
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Current-Aided Multiple-AUV Cooperative Localization and Target Tracking in Anchor-Free Environments
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 3, 页码: 792-806
作者:
Yichen Li
;
Wenbin Yu
;
Xinping Guan
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2023/03/02
Anchor-free
belief propagation
cooperative localization
current-aided
target tracking
Location of Static Targets on the Seabed: A Study
期刊论文
OAI收割
JOURNAL OF INTERNET TECHNOLOGY, 2020, 卷号: 21, 期号: 5, 页码: 1563-1569
作者:
Yao, Biyuan
;
Cao, Xinghui
;
Shen, Binjian
;
Li, Guiqing
;
Yin, Jianhua
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2020/12/17
Static target
Weighted centroid localization algorithm
Least square localization algorithm
Positioning error
Multi-target localization and circumnavigation by a single agent using bearing measurements
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 卷号: 25, 期号: 14, 页码: 2362-2374
作者:
Deghat, Mohammad
;
Xia, Lu
;
Anderson, Brian D. O.
;
Hong, Yiguang
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2018/07/30
target localization
circumnavigation
persistence of excitation
基于点云数据的表面检测与目标定位关键技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2015
作者:
吴倩
收藏
  |  
浏览/下载:236/0
  |  
提交时间:2015/09/02
点云数据
表面检测
路径规划
光学导航
目标定位
Point cloud
Surface inspection
Path planning
Optical navigation
Target localization
网络化机器人系统下的目标跟踪与追捕研究
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
石坤
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2015/09/02
网络化机器人系统
目标定位
跟踪
追捕
混合无线传感器网络
network robot system
target localization
tracking
pursuit
hybrid wireless sensor network
on collaborative tracking of a target group using binary proximity sensors
期刊论文
OAI收割
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2010, 卷号: 70, 期号: 8, 页码: 825-838
Cao Donglei
;
Jin Beihong
;
Das Sajal K.
;
Cao Jiannong
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2011/05/24
Wireless sensor network
Target group tracking
Multi-sensor collaboration
Localization error analysis
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.
Target localization based on multisensor fusion for mobile robots
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2006, 卷号: 21, 期号: 3, 页码: 165-173
作者:
Yang, G. -S.
;
Hou, Z. -G.
;
Tan, M.
;
Yan, H.
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2015/11/07
multisensor fusion
polynomial approximation
target localization
target recognition
mobile robot