中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
Current-Aided Multiple-AUV Cooperative Localization and Target Tracking in Anchor-Free Environments 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 3, 页码: 792-806
作者:  
Yichen Li;  Wenbin Yu;  Xinping Guan
  |  收藏  |  浏览/下载:22/0  |  提交时间:2023/03/02
Location of Static Targets on the Seabed: A Study 期刊论文  OAI收割
JOURNAL OF INTERNET TECHNOLOGY, 2020, 卷号: 21, 期号: 5, 页码: 1563-1569
作者:  
Yao, Biyuan;  Cao, Xinghui;  Shen, Binjian;  Li, Guiqing;  Yin, Jianhua
  |  收藏  |  浏览/下载:27/0  |  提交时间:2020/12/17
Multi-target localization and circumnavigation by a single agent using bearing measurements 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 卷号: 25, 期号: 14, 页码: 2362-2374
作者:  
Deghat, Mohammad;  Xia, Lu;  Anderson, Brian D. O.;  Hong, Yiguang
  |  收藏  |  浏览/下载:22/0  |  提交时间:2018/07/30
基于点云数据的表面检测与目标定位关键技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2015
作者:  
吴倩
收藏  |  浏览/下载:236/0  |  提交时间:2015/09/02
网络化机器人系统下的目标跟踪与追捕研究 学位论文  OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
石坤
收藏  |  浏览/下载:20/0  |  提交时间:2015/09/02
on collaborative tracking of a target group using binary proximity sensors 期刊论文  OAI收割
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2010, 卷号: 70, 期号: 8, 页码: 825-838
Cao Donglei; Jin Beihong; Das Sajal K.; Cao Jiannong
  |  收藏  |  浏览/下载:12/0  |  提交时间:2011/05/24
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE) 会议论文  OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:  
Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:27/0  |  提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper  we combine intensity  orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting  etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity  orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time  we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter  partial occlusions  illumination change  and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels  it only needs 12ms to complete the method. 2007 IEEE.  
Target localization based on multisensor fusion for mobile robots 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2006, 卷号: 21, 期号: 3, 页码: 165-173
作者:  
Yang, G. -S.;  Hou, Z. -G.;  Tan, M.;  Yan, H.
收藏  |  浏览/下载:15/0  |  提交时间:2015/11/07