中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共12条,第1-10条 帮助

条数/页: 排序方式:
State-Based Opacity Verification of Networked Discrete Event Systems Using Labeled Petri Nets 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2024, 卷号: 11, 期号: 5, 页码: 1274-1291
作者:  
Yifan Dong;  Naiqi Wu;  Zhiwu Li
  |  收藏  |  浏览/下载:24/0  |  提交时间:2024/04/10
Research on the Theoretical Framework, Spatio-temporal Laws, and Driving Mechanism of Beautiful Human Settlements-A Case Study of the 14 Prefecture-Level Cities in Liaoning Province 期刊论文  OAI收割
SUSTAINABILITY, 2023, 卷号: 15, 期号: 2
作者:  
Tian, Shenzhen;  Jin, Biyan;  Li, Hang;  Li, Xueming;  Yang, Jun
  |  收藏  |  浏览/下载:14/0  |  提交时间:2023/03/03
Linear system design with application in wireless sensor networks 期刊论文  OAI收割
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2022, 卷号: 27, 页码: 14
作者:  
Gao, Kaiye;  Peng, Rui;  Qu, Li;  Xing, Liudong;  Wang, Shouyang
  |  收藏  |  浏览/下载:21/0  |  提交时间:2023/02/07
Finite-time leader-following output consensus for multi-agent systems via extended state observer 期刊论文  OAI收割
Automatica, 2021, 卷号: 124, 页码: 1-5
作者:  
  |  收藏  |  浏览/下载:18/0  |  提交时间:2020/10/06
Multi-State System Reliability Evaluation and Component Allocation Optimization Under Multi-Level Performance Sharing 期刊论文  OAI收割
IEEE ACCESS, 2021, 卷号: 9, 页码: 88820-88834
作者:  
Huang, Shuxuan;  Lei, Bingyin;  Gao, Kaiye;  Wu, Zixuan;  Wang, Ziwen
  |  收藏  |  浏览/下载:28/0  |  提交时间:2021/10/26
Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach 期刊论文  OAI收割
IET CONTROL THEORY AND APPLICATIONS, 2020, 卷号: 14, 期号: 9, 页码: 1147-1157
作者:  
Xiong, Tianyi;  Pu, Zhiqiang;  Yi, Jianqiang;  Tao, Xinlong
  |  收藏  |  浏览/下载:49/0  |  提交时间:2020/07/06
neurocontrollers  multi-agent systems  Lyapunov methods  closed loop systems  nonlinear control systems  time-varying systems  adaptive control  observers  uncertain systems  position control  radial basis function networks  robust control  control system synthesis  learning (artificial intelligence)  minimal learning-parameter approach  fixed-time CLSO  time-varying formation tracking problem  formation tracking control scheme  multiagent systems  time-varying formation tracking control problem  model uncertainties  velocity measurements  radial basis function neural networks  fixed-time cascaded leader state observer  fixed-time observer-based adaptive neural network time-varying formation tracking control  RBFNN-based adaptive control scheme  
SIMSF: A Scale Insensitive Multi-Sensor Fusion Framework for Unmanned Aerial Vehicles Based on Graph Optimization 期刊论文  OAI收割
IEEE ACCESS, 2020, 卷号: 8, 页码: 118273-118284
作者:  
Dai B(代波);  He YQ(何玉庆);  Yang LY(杨丽英);  Su Y(苏赟);  Yue, Yufeng
  |  收藏  |  浏览/下载:49/0  |  提交时间:2020/08/01
Robust global consensus tracking of linear multi-agent systems with input saturation via scheduled low-and-high gain feedback 期刊论文  OAI收割
IET CONTROL THEORY AND APPLICATIONS, 2019, 卷号: 13, 期号: 1, 页码: 69-77
作者:  
Chu, Hongjun;  Chen, Jianliang;  Wei, Qinglai;  Zhang, Weidong
  |  收藏  |  浏览/下载:63/0  |  提交时间:2019/07/12
Shuffle based Anomaly Detection in Multi-state System 会议论文  OAI收割
7th Annual IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER 2017), Hawaii, USA, July 31 - August 4, 2017
作者:  
Cong Y(丛杨);  Hou DD(侯冬冬);  Xu XW(徐晓伟);  Sun G(孙干)
  |  收藏  |  浏览/下载:28/0  |  提交时间:2017/12/21
Study on image real-time interpretation based on particle filter (EI CONFERENCE) 会议论文  OAI收割
2011 International Conference on Mechatronic Science, Electric Engineering and Computer, MEC 2011, August 19, 2011 - August 22, 2011, Jilin, China
作者:  
Liu S.-J.
收藏  |  浏览/下载:27/0  |  提交时间:2013/03/25
In order to satisfy to the real-time requirement of image interpretation system in photoelectric measurement equipments  a kind of hardware acceleration system with MIMD distributed multi-processor architecture based on SOPC technology is designed. The particle filter algorithm is proposed to process image interpretation for state estimation problem of nonlinear and non-Gaussian system. This algorithm does not involve conventional linearization transform  and has approximated the posterior probability density by a set of discrete particles. Therefore the approximate optimum result is educed. It has a high accuracy and a rapid convergence. Experimental results show that the algorithm be adequate to real time  accuracy and robustness  meets the requirement of image interpretation and possesses practical significance for engineering applications. 2011 IEEE.